
research papers

656 doi:10.1107/S2053273314016696 Acta Cryst. (2014). A70, 656–669

Acta Crystallographica Section A

Foundations and
Advances

ISSN 2053-2733

Received 11 June 2014

Accepted 18 July 2014

# 2014 International Union of Crystallography

The coincidence problem for shifted lattices and
crystallographic point packings

Manuel Joseph C. Loquiasa* and Peter Zeinerb

aInstitute of Mathematics, University of the Philippines Diliman, 1101 Quezon City, Philippines,

and bFakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501, Germany.

Correspondence e-mail: mjcloquias@math.upd.edu.ph

A coincidence site lattice is a sublattice formed by the intersection of a lattice �
in Rd with the image of � under a linear isometry. Such a linear isometry is

referred to as a linear coincidence isometry of �. The more general case allowing

any affine isometry is considered here. Consequently, general results on

coincidence isometries of shifted copies of lattices, and of crystallographic point

packings are obtained. In particular, the shifted square lattice and the diamond

packing are discussed in detail.

1. Introduction and outline

It was Friedel in 1911 who first recognized the usefulness of

coincidence site lattices (CSLs) in describing and classifying

grain boundaries of crystals (Friedel, 1911). Since then, CSLs

have been an indispensable tool in the study of grain bound-

aries, twins and interfaces (Kronberg & Wilson, 1949; Boll-

mann, 1970; Warrington & Bufalini, 1971). This prompted

various authors to examine the CSLs of cubic and hexagonal

crystals (Ranganathan, 1966; Grimmer et al., 1974; Grimmer,

1974a; Grimmer & Warrington, 1985).

The advent of quasicrystals in 1984 triggered a renewed

interest in CSLs. This is because experimental evidence

showed that quasicrystals, like ordinary crystals, exhibit

multiple grains, twin relationships and coincidence quasi-

lattices (Warrington, 1993; Warrington & Lück, 1995). This led

to a more general and mathematical treatment of the coin-

cidence problem for lattices in Baake (1997).

Various results are now known about the coincidences of

lattices and modules in dimensions of at most four. The

coincidence problem for certain planar lattices and modules

was solved (Pleasants et al., 1996; Baake, 1997) using factor-

ization properties of cyclotomic integers. For lattices and

modules in dimensions three and four, quaternions have

proven to be an appropriate tool (Baake, 1997; Zeiner, 2005,

2006; Baake et al., 2007, 2008; Roth & Lück, 1997; Baake &

Zeiner, 2008; Heuer, 2008; Heuer & Zeiner, 2010).

However, the mathematical treatment of the coincidence

problem has been mostly restricted to linear coincidence

isometries, whereas isometries containing a translational part

have rarely been treated so far. Nevertheless, general (affine)

isometries are important in crystallography. Indeed, the

situation where one shifts the two component crystals against

each other was investigated (Gleiter & Chalmers, 1972;

Fischmeister, 1985, and references therein).

Even though the idea of introducing a shift after applying a

linear coincidence isometry has already been dealt with in the

physical literature, not much can be found in the mathematical

literature where a systematic treatment of the subject is still

missing. Initial steps in this general direction have actually

been made in the appendix of Pleasants et al. (1996). There,

the authors considered coincidence isometries about certain

points that are not lattice or module points. For example, they

determined the set of coincidence isometries about the centre

of a Delauney cell of the square lattice and calculated the

corresponding indices.

The present work started from the PhD thesis of the first

named author (Loquias, 2010) and extends results from

Loquias & Zeiner (2010). Here, the notion of a CSL is

extended to intersections of two lattices that are related by

any isometry. Such intersections are referred to as affine

coincidence site lattices (ACSLs), and the isometries that

generate these intersections as affine coincidence isometries.

Theorem 3.3 identifies the affine coincidence isometries of a

lattice, while equation (3.1) gives the resulting intersections.

The succeeding discussion covers a related and special case:

the coincidence problem for shifted lattices. That is, after

translating the lattice � by some vector x, and upon applica-

tion of a linear isometry R to the shifted lattice xþ �, its

intersection with xþ � is considered. Theorem 4.3 asserts that

the linear coincidence isometries of xþ � are precisely those

coincidence isometries R of � that satisfy Rx� x 2 �þ R�.

Moreover, the CSLs of the shifted lattice are merely translates

of CSLs of the original lattice. Hence, no new values of

coincidence indices are obtained by shifting the lattice, with

some values disappearing or their multiplicity being changed.

Similar to the approach in Pleasants et al. (1996) and Baake

(1997), an extensive analysis of the coincidences of a shifted

square lattice in x5 is achieved by identifying the square lattice

with the ring of Gaussian integers. The coincidence problem

for a shifted square lattice is completely solved when the shift

comprises an irrational component (Theorem 5.7). For the

remaining case, that is, when the shift may be written as a

quotient of two Gaussian integers that are relatively prime,
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one can compute for the set of coincidence rotations of

the shifted square lattice using a divisibility condition invol-

ving the denominator of the shift (Lemma 5.9). In both

instances, the set of coincidence rotations of a shifted square

lattice forms a group. An example is given where the set of

coincidence isometries of a shifted square lattice is not a

group.

The latter part of this contribution is concerned with the

coincidences of sets of points formed by the union of a lattice

with a finite number of shifted copies of the lattice. Such sets

are referred to as crystallographic point packings (Conway &

Sloane, 1999; Baake & Grimm, 2013) or multilattices (see

Pitteri & Zanzotto, 1998, and references therein). This idea

should be useful for crystals having multiple atoms per

primitive unit cell (Gratias & Portier, 1982; Pond & Vlachavas,

1983). Theorem 6.3 gives the solution of the coincidence

problem for crystallographic point packings. Simply put, the

linear coincidence isometries of a crystallographic point

packing are exactly the coincidence isometries of the lattice

that generate the crystallographic point packing – only the

resulting intersections and corresponding indices may vary.

This paves the way for the solution of the coincidence problem

for the diamond packing given in Theorem 7.3.

2. Linear coincidences of lattices

We start with the basic definitions and some known results on

linear coincidence isometries of lattices. Details can be seen,

for instance, in Baake (1997) and Baake & Grimm (2013).

A discrete subset � of Rd is a lattice if it is the Z-span of d

linearly independent vectors v1; . . . ; vd 2 R
d over R. The set

fv1; . . . ; vdg is called a basis of �, and � ¼ Zv1 � � � � � Zvd. As

a group, � is isomorphic to the free Abelian group of rank d.

Alternatively, one can characterize a lattice in Rd as a discrete

co-compact subgroup of Rd. A subset �0 of � is a sublattice of

� if �0 is a subgroup of � of finite (group) index. The index of

�0 in � may be interpreted geometrically – [� : �0] is the

quotient of the volume of a fundamental domain of �0 by the

volume of a fundamental domain of �.

For a lattice � in Rd, its dual lattice or reciprocal lattice �� is

defined by

�� :¼ fx 2 Rd : hx; yi 2 Z for all y 2 �g;

where h�; �i denotes the standard scalar product in Rd. Given

a sublattice �0 of �, �� is a sublattice of ð�0Þ� with

½ð�0Þ� : ��� ¼ ½� : �0� and ð�0Þ�=�� ffi �=�0 (Baake, 1997,

Lemma 2.3).

Two lattices �1 and �2 are said to be commensurate,

denoted �1 � �2, if �1 \ �2 is a sublattice of both �1 and �2.

Commensurateness between lattices defines an equivalence

relation (Baake, 1997, Proposition 2.1). Given two commen-

surate lattices �1 and �2, their sum �1 þ �2 :¼
fx1 þ x2 : x1 2 �1; x2 2 �2g is also a lattice. In fact, the

following equations hold: ð�1 \ �2Þ
�
¼ ��1 þ ��2 and

ð�1 þ �2Þ
�
¼ ��1 \ ��2 (Baake, 1997, Proposition 2.2).

An orthogonal transformation R 2 OðdÞ :¼ Oðd;RÞ is a

linear coincidence isometry of the lattice � in Rd if � � R�.

The sublattice �ðRÞ :¼ � \ R� is called the coincidence site

lattice of � generated by R, while the index of �ðRÞ in �,

��ðRÞ :¼ ½� : �ðRÞ� ¼ ½R� : �ðRÞ�, is referred to as the coin-

cidence index of R with respect to �. If no confusion arises, we

simply write �ðRÞ to denote the coincidence index of R.

Clearly, symmetries in the point group of �, Pð�Þ ¼
fR 2 OðdÞ : R� ¼ �g are precisely those linear coincidence

isometries R of � with �ðRÞ ¼ 1.

The set of linear coincidence isometries of a lattice � in Rd

is denoted by OCð�Þ, while the set of coincidence rotations

of �, that is, OCð�Þ \ SOðdÞ, is written as SOCð�Þ. Since

commensurateness of lattices is an equivalence relation, the

set OCð�Þ forms a group having SOCð�Þ as a subgroup

(Baake, 1997, Theorem 2.1).

3. Affine coincidences of lattices

Let � be a lattice in Rd. A subset of � will be called a co-

sublattice of � if it is a coset ‘þ �0 of some sublattice �0 of �.

The index of a cosublattice ‘þ �0 of �, denoted by [� : ‘þ �0],
is defined as the index of the sublattice �0 in �. This definition

of index makes sense geometrically: a translation does not

change the volume of the fundamental domains of � and �0.
Denote by EðdÞ the group of isometries of Rd. An element

of EðdÞ shall be written as ðv;RÞ, where ðv;RÞ : x 7! vþ RðxÞ,

with R 2 OðdÞ (the linear part of f) and v 2 Rd (the transla-

tional part of f). The definition below generalizes the concept

of a linear coincidence isometry to an affine coincidence

isometry.

Definition 3.1. Let � be a lattice in Rd and ðv;RÞ 2 EðdÞ.

Then ðv;RÞ is an affine coincidence isometry of � if � \ ðv;RÞ�
contains a cosublattice of �.

The set of affine coincidence isometries of � shall be

denoted by AOCð�Þ. It is easy to see that AOCð�Þ contains

the group

OCð�Þ ¼ AOCð�Þ \OðdÞ ¼ fðv;RÞ 2 AOCð�Þ : v ¼ 0g:

The following lemma describes the intersection of two

lattices that are related by some isometry.

Lemma 3.2. Let � 	 Rd be a lattice and ðv;RÞ 2 EðdÞ. If

v 2 ‘þ R� for some ‘ 2 �, then � \ ðv;RÞ� ¼ ‘þ ð� \ R�Þ.

Lemma 3.2 is easy to see since � \ ð‘;RÞ� ¼ ‘þ ð� \ R�Þ.
It brings about the following characterization of an affine

coincidence isometry of a lattice.

Theorem 3.3. Let � be a lattice in Rd. Then ðv;RÞ 2 EðdÞ is

an affine coincidence isometry of � if and only if R 2 OCð�Þ
and v 2 �þ R�.

Proof. It follows from Lemma 3.2 that if R 2 OCð�Þ and

v 2 �þ R� then � \ ðv;RÞ� is a coset of �ðRÞ. In the other

direction, let ðv;RÞ 2 AOCð�Þ. Since � \ ðv;RÞ� 6¼ ;, one has
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v 2 �þ R�. Lemma 3.2 then implies that ½� : � \ R��
¼ ½� : � \ ðv;RÞ��<1. This yields � � R� and R 2 OCð�Þ.

&

Therefore, the set of affine coincidence isometries of � is

given by

AOCð�Þ ¼ fðv;RÞ 2 EðdÞ : R 2 OCð�Þ and v 2 �þ R�g:

Moreover, if ðv;RÞ 2 AOCð�Þ with v 2 ‘þ R� for some

‘ 2 �, then

� \ ðv;RÞ� ¼ ‘þ �ðRÞ ð3:1Þ

by Lemma 3.2. Thus, � \ ðv;RÞ� is a coset of �ðRÞ. This means

that the intersection � \ ðv;RÞ� does not only contain a

cosublattice of � but is in fact a cosublattice of �. For this

reason, we shall refer to � \ ðv;RÞ� as an affine coincidence

site lattice (ACSL) of �. In addition, each R 2 OCð�Þ corre-

sponds to �ðRÞ distinct possible ACSLs.

Remark 3.4. Another lattice of interest in the study of grain

boundaries is the displacement shift complete (DSC) lattice. It

is the lattice formed by all possible displacement vectors that

preserve the structure of the grain boundary. In this setting,

given a linear coincidence isometry R of the lattice �, the

corresponding DSC lattice is fv : ðv;RÞ 2 AOCð�Þg ¼ �þ R�
by Theorem 3.3. This conclusion is in agreement with the main

result of Grimmer (1974b), which states that the DSC lattice

generated by R is the dual lattice of the CSL of �� obtained

from R, that is, ð�� \ R��Þ� ¼ �þ R�.

Now, the identity isometry 1d 2 AOCð�Þ for any lattice � in

Rd. In addition, it follows from Theorem 3.3 that the inverse of

every isometry in AOCð�Þ is also in AOCð�Þ. However, the

product of two affine coincidence isometries of � may or may

not be an element of AOCð�Þ. Thus, the set AOCð�Þ does not

always form a group. Actually, AOCð�Þ is a group only if it is

sufficiently small.

Proposition 3.5. Let � 	 Rd be a lattice. Then AOCð�Þ is a

group if and only if it is the symmetry group G of �.

Proof. Suppose AOCð�Þ is a group and take

ðv;RÞ 2 AOCð�Þ. It follows from Theorem 3.3 that the

product ðv;RÞð0;R�1Þ ¼ ðv; 1dÞ 2 AOCð�Þ and so v 2 �.

Furthermore, �þ R� ¼ � and hence R 2 Pð�Þ. Since � is a

lattice, its symmetry group G must be symmorphic, i.e., it is the

semidirect product of Pð�Þ with its translation subgroup TðGÞ.

Thus, ðv;RÞ 2 G. &

In particular, AOCð�Þ is a group only if OCð�Þ ¼ Pð�Þ, i.e.,

if � has no coincidence isometries R with �ðRÞ> 1.

Note that Proposition 3.5 is only true for lattices. It is

difficult in the case of crystallographic point packings. Without

going into details here, we mention that AOCðLÞ is a group

only if it is a symmorphic space group. In fact, PðLÞ has to be a

holohedry and AOCðLÞ turns out to be the symmetry group of

some suitable lattice � � L. Note that AOCðLÞ may be a

proper supergroup of the symmetry group of L, where the

latter may even be a non-symmorphic space group.

4. Linear coincidences of shifted lattices

We now turn our attention to shifted copies xþ � of a lattice

� inRd obtained by translating all the points of � by the vector

x 2 Rd. By a cosublattice of the shifted lattice xþ �, we

mean a subset of xþ � of the form xþ ð‘þ �0Þ where

‘þ �0 is a cosublattice of �. In addition, the index of the

cosublattice xþ ð‘þ �0Þ in xþ � is understood to be

½xþ � : xþ ð‘þ �0Þ� :¼ ½� : �0�. There is no ambiguity here –

relabelling x as the origin gives back the original lattice � and

cosublattice ‘þ �0. Of particular interest in this section are

intersections of the form ðxþ �Þ \ Rðxþ �Þ, where R 2 OðdÞ.

Definition 4.1. Let � be a lattice in Rd and x 2 Rd. An

R 2 OðdÞ is said to be a linear coincidence isometry of the

shifted lattice xþ � if ðxþ �Þ \ Rðxþ �Þ is a cosublattice of

xþ �.

The intersection ðxþ �Þ \ Rðxþ �Þ will also be referred to

as a CSL of the shifted lattice xþ �. The coincidence index of

R with respect to xþ � is taken to be �xþ�ðRÞ

:¼ ½xþ � : ðxþ �Þ \ Rðxþ �Þ�. The set of all linear coin-

cidence isometries of xþ � shall be denoted by OCðxþ �Þ.
Likewise, we take SOCðxþ �Þ :¼ OCðxþ �Þ \ SOðdÞ.

Remark 4.2. Observe that applying a linear isometry R to

the shifted lattice xþ � is equivalent to applying the same

isometry R but with centre at �x to the original lattice �.

Hence, just as OCð�Þ is an extension of Pð�Þ, one may inter-

pret OCðxþ �Þ as a generalization of the stabilizer of the

point �x.

The following theorem characterizes a linear coincidence

isometry R of a shifted lattice xþ � and identifies the CSL of

xþ � generated by R. The result lies in the fact that taking the

intersection of xþ � and Rðxþ �Þ corresponds to a shift of

the intersection of � and ðRx� x;RÞ� by x. It is a special case

of Lemma 6.1 which will be stated and proved in x6.

Theorem 4.3. Let � be a lattice in Rd and x 2 Rd. Then

OCðxþ �Þ ¼ fR 2 OCð�Þ : Rx� x 2 �þ R�g:

In addition, if R 2 OCðxþ �Þ with Rx� x 2 ‘þ R� for some

‘ 2 �, then

ðxþ �Þ \ Rðxþ �Þ ¼ ðxþ ‘Þ þ �ðRÞ: ð4:1Þ

Equation (4.1) indicates that the CSL of the shifted lattice

xþ � generated by R 2 OCðxþ �Þ is obtained by translating

some coset of �ðRÞ in � by x. Consequently,

�xþ�ðRÞ ¼ ��ðRÞ ð4:2Þ

for all R 2 OCðxþ �Þ. This means that shifting a lattice does

not yield any new values of coincidence indices.

Let S 2 Pð�Þ. If R 2 OCð�Þ then RS 2 OCð�Þ and the CSLs

generated by R and RS are the same, that is, �ðRSÞ ¼ �ðRÞ.
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The corresponding statement for linear coincidence isometries

of shifted lattices reads as follows. It will prove to be useful

when counting the number of CSLs of a shifted lattice for a

given index.

Proposition 4.4. Let xþ � 	 Rd be a shifted lattice,

S 2 Pð�Þ, and suppose that R;RS 2 OCðxþ �Þ. Then

ðxþ �Þ \ RSðxþ �Þ ¼ ðxþ �Þ \ Rðxþ �Þ if and only if

S 2 OCðxþ �Þ. In particular, if OCðxþ �Þ forms a group,

then ðxþ �Þ \ RSðxþ �Þ ¼ ðxþ �Þ \ Rðxþ �Þ.

Proof. It follows from Theorem 4.3 that Rx� x 2 ‘1 þ R�
and RSx� x 2 ‘2 þ R� for some ‘1; ‘2 2 �. Equation (4.1)

yields that ðxþ �Þ \ RSðxþ �Þ ¼ ðxþ �Þ \ Rðxþ �Þ if and

only if Sx� x 2 �. Applying Theorem 4.3 proves the claim. &

Note that for any S 2 Pð�Þ, the condition S 2 OCðxþ �Þ in

Proposition 4.4 is equivalent to saying that S is an element of

the stabilizer of �x (see Remark 4.2).

Proposition 4.5. Let � 	 Rd be a lattice and x 2 Rd. If

S 2 Pð�Þ then

OCðSxþ �Þ ¼ S½OCðxþ �Þ�S�1:

Proof. This is a consequence of Theorem 4.3 because

SRS�1ðSxÞ � Sx 2 �þ SRS�1� if and only if Rx� x 2

�þ R� for all R 2 OCð�Þ. &

For a given lattice � 	 Rd, it is enough to consider values of

x in a fundamental domain of � to compute for all the

different possible sets OCðxþ �Þ. Proposition 4.5 asserts even

more: it suffices to look at values of x in a fundamental domain

of the symmetry group of �.

Furthermore, the following inclusion property follows

immediately from Theorem 4.3.

Lemma 4.6. If � is a lattice in Rd and x; y 2 Rd, then for all

a; b 2 Z,

OCðxþ �Þ \OCðyþ �Þ 	 OC½ðaxþ byÞ þ ��:

Corollary 4.7. Let � be a lattice in Rd and x ¼ ð1=nÞ‘, where

‘ 2 � and n 2 N. If a 2 Z with a and n relatively prime, then

OCðaxþ �Þ ¼ OCðxþ �Þ.

Proof. The inclusion OCðxþ �Þ 	 OCðaxþ �Þ follows

directly from Lemma 4.6. Since a is relatively prime to n, there

exist integers b and c such that abþ nc ¼ 1. Applying again

Lemma 4.6 yields

OCðaxþ �Þ 	 OC ðabþ ncÞ
1

n
‘

� �
þ �

� �
¼ OCðxþ �Þ:

&

The next proposition compares the sets of linear coin-

cidence isometries of shifts of similar lattices and is the

analogue of Lemma 2.5 in Baake (1997) for shifted lattices.

Proposition 4.8. Let � be a lattice in Rd and x 2 Rd.

(i) If � 2 Rþ then OCð�xþ ��Þ ¼ OCðxþ �Þ with

��xþ��ðRÞ ¼ ��ðRÞ for all R 2 OCð�xþ ��Þ.
(ii) If S 2 OðdÞ then OCðSxþ S�Þ ¼ S½OCðxþ �Þ�S�1 with

�SxþS�ðRÞ ¼ ��ðS
�1RSÞ for all R 2 OCðSxþ S�Þ.

Proof. Both statements follow from Theorem 4.3 and

equation (4.2). &

Now, it is evident from Theorem 4.3 that OCðxþ �Þ is a

subset of OCð�Þ. The set OCðxþ �Þ is certainly nonempty

because it contains the identity isometry. It also follows from

Theorem 4.3 that OCðxþ �Þ is closed under inverses, that is,

R�1 2 OCðxþ �Þ whenever R 2 OCðxþ �Þ. However, given

R1, R2 2 OCðxþ �Þ, the product R2R1 is not necessarily in

OCðxþ �Þ. Thus, one obtains the following result.

Proposition 4.9. For a given lattice � 	 Rd and x 2 Rd, the

set OCðxþ �Þ is a group if and only if it is closed under

composition.

We shall see in Example 5.18 an instance when OCðxþ �Þ
fails to form a group. In any case, the product of two linear

coincidence isometries of xþ � whose coincidence indices are

relatively prime turns out to be again a linear coincidence

isometry of xþ �. This result is stated in the next proposition.

Proposition 4.10. Let � 	 Rd be a lattice and x 2 Rd. If

R1;R2 2 OCðxþ �Þ with �ðR1Þ and �ðR2Þ relatively prime,

then R2R1 2 OCðxþ �Þ.

Proof. From Theorem 4.3, Rj 2 OCð�Þ and Rjx� x

2 �þ Rj� for j 2 f1; 2g. Thus, the product R2R1 2 OCð�Þ. In

addition, R2R1x� x 2 �þ R2R1� because �ðR1Þ and �ðR2Þ

are relatively prime (see Fig. 2 of Zeiner, 2010). The claim now

follows from Theorem 4.3. &

5. Linear coincidences of a shifted square lattice

Let us illustrate our results for the square lattice Z2
’ Z½i�.

The solution of its ordinary coincidence problem is known in

detail (Baake, 1997; Pleasants et al., 1996; Loquias & Zeiner,

2010) and we can get very explicit results for its shifted copies

as well. Some of the results have already been published in

Loquias & Zeiner (2010), but for the sake of completeness we

will recall them here.

5.1. Solution of the coincidence problem for the square
lattice

Let us first summarize the coincidences of the square lattice

Z2 (for details, see Baake, 1997; Pleasants et al., 1996; Loquias

& Zeiner, 2010). We restrict our discussion to coincidence
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rotations at the outset and later on extend it to include coin-

cidence reflections.

The group of coincidence rotations of Z2 is SOð2;QÞ. To

determine the structure of this group, the square lattice is

identified with the ring of Gaussian integers � ¼ Z½i� ¼
fmþ ni : m; n 2 Z; i2 ¼ �1g embedded in C. It can be shown

that every coincidence rotation in SOCð�Þ by an angle of � in

the counterclockwise direction corresponds to multiplication

by the complex number ei� ¼ "z=z on the unit circle, where

" 2 f�1;�ig is a unit in Z½i� and z is a Gaussian integer with z

relatively prime to z. That is, a coincidence rotation R of � is

equivalent to multiplication by the complex number

" �
Y

p1ð4Þ

 
!p

!p

!np

; ð5:1Þ

where np 2 Z and only a finite number of np 6¼ 0, p runs over

all rational primes p  1 ðmod 4Þ (called splitting primes in

Z½i�), and !p, and its complex conjugate !p, are the Gaussian

prime factors of p ¼ !p � !p. Then z reads

z ¼
Y
p1ð4Þ
np>0

!p
np �

Y
p1ð4Þ
np<0

!p

� ��np ; ð5:2Þ

and the coincidence index of R is equal to the number theo-

retic norm of z, �ðRÞ ¼ NðzÞ :¼ z � z ¼ jzj2. In addition, the

CSL obtained from R is the principal ideal �ðRÞ ¼
ðzÞ :¼ zZ½i�. Consequently, the group of coincidence rotations

of the square lattice is given by SOð2;QÞ ffi C4 � Z
ð@0Þ, where

C4 is the cyclic group of order 4 generated by i, and Zð@0Þ is the

direct sum of countably many infinite cyclic groups each of

which is generated by some !p=!p.

Every coincidence reflection T of Z2 can be written as

T ¼ R � Tr, where R 2 SOCð�Þ and Tr is the reflection

along the real axis (corresponding to complex conjugation).

Hence, �ðTÞ ¼ �ðRÞ, �ðTÞ ¼ �ðRÞ and OCðZ2
Þ ¼ Oð2;QÞ ¼

SOCðZ2
Þ �hTri (where � stands for semidirect product).

The coincidence indices and the number of CSLs of Z2 for a

given index m are described by means of a generating func-

tion. If fZ2ðmÞ denotes the number of CSLs of Z2 of index m,

then fZ2 is multiplicative [that is, fZ2 ð1Þ ¼ 1 and fZ2 ðmnÞ ¼

fZ2 ðmÞfZ2 ðnÞ whenever m and n are relatively prime]. The

generating function for fZ2 as a Dirichlet series �Z2 ðsÞ is given

by

�Z2 ðsÞ ¼
X1
m¼1

fZ2 ðmÞ

ms
¼

Y
p1ð4Þ

1þ p�s

1� p�s
¼

1

1þ 2�s
�
�QðiÞðsÞ

�ð2sÞ

¼ 1þ
2

5s
þ

2

13s
þ

2

17s
þ

2

25s
þ

2

29s
þ

2

37s
þ

2

41s
þ

2

53s

þ
2

61s
þ

4

65s
þ

2

73s
þ � � � ð5:3Þ

where �QðiÞðsÞ is the Dedekind zeta function of the quadratic

field QðiÞ and �ðsÞ ¼ �QðsÞ is Riemann’s zeta function (see

Cohn, 1978; Washington, 1997). As the rightmost pole of

�Z2 ðsÞ is located at s ¼ 1, we can infer from Delange’s

theorem (see, for instance, Baake & Moody, 1999, Theorem 5

of the Appendix) that the summatory function
P

m�N fZ2 ðmÞ

grows asymptotically as N=�. In other words, the number of

CSLs of Z2 of index at most N is asymptotically given by

N=�.

The number of coincidence rotations of Z2 for a given index

m is given by f̂fZ2 ðmÞ ¼ 4fZ2 ðmÞ and the Dirichlet series

generating function for f̂fZ2 is 4�Z2ðsÞ.

Remark 5.1. Observe from the complex number in (5.1) and

equation (5.2) that each coincidence rotation R of � ¼ Z2 can

be associated with a numerator z and unit ", and this shall be

written as Rz;". Note however that this correspondence is not

unique (see Loquias & Zeiner, 2010, for details). Similarly,

Tz;" 2 OCð�Þ n SOCð�Þ is understood to be the coincidence

reflection Tz;" ¼ Rz;" � Tr.

5.2. The sets SOC(x + C) and OC(x + C)

It is well known that SOCð�Þ and OCð�Þ are groups for

arbitrary lattices �, but SOCðxþ �Þ and OCðxþ �Þ cannot be

expected to form groups in general. Hence, we first concen-

trate on determining the structure of SOCðxþ �Þ and

OCðxþ �Þ for � ¼ Z½i�. To this end, we start with a criterion

for R 2 OCð�Þ to be a coincidence isometry of xþ � (Loquias

& Zeiner, 2010; see also Loquias, 2010).

Lemma 5.2. Let � ¼ Z½i�, x 2 C, Rz;" 2 SOCð�Þ and

Tz;" 2 OCð�Þ n SOCð�Þ. Then

(i) Rz;" 2 SOCðxþ �Þ if and only if ð"z� zÞx 2 �.

(ii) Tz;" 2 OCðxþ �Þ if and only if "zx� zx 2 �.

It turns out that the set of coincidence rotations of xþ �
forms a group (see Loquias & Zeiner, 2010, Theorem 3, or

Loquias, 2010, Theorem 3.20).

Theorem 5.3. If � ¼ Z½i� then SOCðxþ �Þ is a subgroup of

SOCð�Þ for all x 2 C.

The core of the proof is to show that the product

Rz2;"1
Rz1;"2

¼ Rh2h1;"2"1
is again a coincidence rotation of xþ �,

where g :¼ gcdðz1; z2Þ (up to a factor that is a unit of Z½i�) and

h1 ¼ z1=g, h2 ¼ z2=g. This is achieved by showing that

ð"2"1h2h1 � h2h1Þx 2 ð1=gÞ� \ ð1=gÞ�.

However, the situation is more complicated for OCðxþ �Þ.
Analogous techniques allow us to show that the product of a

rotation R 2 SOCðxþ �Þ and a reflection T 2 OCðxþ �Þ is

again in OCðxþ �Þ, but they fail for the product of two

reflections in OCðxþ �Þ. Thus we get the following weaker

result.

Lemma 5.4. Let � ¼ Z½i� and x 2 C. Then OCðxþ �Þ is a

subgroup of OCð�Þ if and only if for any coincidence reflec-

tions T1, T2 2 OCðxþ �Þ, the coincidence rotation T2T1 2

SOCðxþ �Þ.

Remark 5.5. Let x 2 C and Tj ¼ Tzj;"j
2

OCðxþ �Þ n SOCðxþ �Þ for j 2 f1; 2g. Applying the proce-

dure used in the proof of Theorem 5.3 to the product T2T1

only leads to
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"2"1h2h1 � h2h1

� �
x 2

1

g
�; ð5:4Þ

where g :¼ gcdðz1; z2Þ and zj ¼ hjg for j 2 f1; 2g. It follows

then from Lemma 5.2 that if z1 were relatively prime to z2,

then T2T1 ¼ Rh2h1;"2"1
2 ðSÞOCðxþ �Þ. This fact can also be

deduced from Proposition 4.10, because if z1 and z2 were

relatively prime in Z½i�, then so are Nðz1Þ ¼ �ðR1Þ and

Nðz2Þ ¼ �ðR2Þ.

Proposition 5.6. Let � ¼ Z½i� and x 2 C. If OCðxþ �Þ
contains a reflection symmetry T 2 Pð�Þ then OCðxþ �Þ
¼ SOCðxþ �Þ �hTi and is a subgroup of OCð�Þ. Otherwise,

the coincidence reflection Tz;" =2OCðxþ �Þ for all units " of

Z½i� whenever R ¼ Rz;"0 2 SOCðxþ �Þ for some unit "0.

Proof. Because T 2 Pð�Þ, T ¼ T1;" for some unit " of Z½i�.

Thus, x 2 "xþ � by Lemma 5.2. Let Tj ¼ Tzj;"j
2

OCðxþ �Þ n SOCðxþ �Þ for j 2 f1; 2g. If g :¼ gcdðz1; z2Þ and

zj ¼ hjg for j 2 f1; 2g, then it follows from Lemma 5.2 that

g "2"1h2h1 � h2h1

� �
x

¼ "1h1ð"2z2x� z2xÞ � "1h2ð"1z1x� z1xÞ 2 �:

Since x 2 "xþ �, we have ð"2"1h2h1 � h2h1Þx 2 ð1=gÞ�. This,

together with equation (5.4), implies that ð"2"1h2h1 � h2h1Þx

2 ð1=gÞ� \ ð1=gÞ� ¼ �, and thus T2T1 2 OCðxþ �Þ. From

Lemma 5.4, OCðxþ �Þ is a subgroup of OCð�Þ.
In addition, any coincidence reflection T 0 ¼ Tz0;"0 of xþ �

can be written as T 0 ¼ R0 � T where R0 ¼ Rz0;""0 2 SOCðxþ �Þ.
Hence, OCðxþ �Þ is the semidirect product of SOCðxþ �Þ
and hTi.

Suppose OCðxþ �Þ does not contain any reflection

symmetry and Tz;" 2 OCðxþ �Þ for some unit " of Z½i�. Since

R 2 SOCðxþ �Þ, R�1 � Tz;" 2 OCðxþ �Þ by Lemma 5.4. This

is a contradiction because R�1 � Tz;" ¼ T1;"0" 2 Pð�Þ. &

5.3. Determination of SOC(x + C) and OC(x + C)

We now turn to the actual computation of OCðxþ �Þ for

specific values of x. We start with the case when x has an

irrational component. Here, the sets SOCðxþ �Þ and

OCðxþ �Þ are small and thus can be determined completely.

The results are summarized in the following theorem, which

has been announced in Loquias & Zeiner (2010) without

proof.

Theorem 5.7. Let � ¼ Z½i� and x ¼ aþ bi, with a; b 2 R. If

a or b is irrational then OCðxþ �Þ is a group of at most two

elements. In particular, if

(i) a is irrational and b is rational then

OCðxþ �Þ ¼
hTri; if 2b 2 Z

f1g; otherwise

�

(ii) a is rational and b is irrational then

OCðxþ �Þ ¼
hT1;�1i; if 2a 2 Z

f1g; otherwise

�

(iii) both a and b are irrational, and

(a) 1, a and b are rationally independent then OCðxþ �Þ
¼ f1g

(b) a ¼ ðp1=q1Þ þ ðp2=q2Þb where pj, qj 2 Z, and pj is rela-

tively prime to qj for j 2 f1; 2g, with

1. p2q2 even, then

OCðxþ �Þ ¼
hTp2þq2i;1i; if q1 j 2q2

f1g; otherwise

�

2. p2q2 odd, then

OCðxþ �Þ ¼
hTðp2þq2Þ=2�ðp2�q2Þi=2;ii; if q1 j q2

f1g; otherwise:

�

Proof. Suppose either a or b is irrational, that is, x =2QðiÞ.
If Rz;" 2 SOCðxþ �Þ then it follows from Lemma 5.2 that

"z� z ¼ 0. Thus, "z=z ¼ 1 which means that SOCðxþ �Þ
¼ f1g, where 1 is the identity isometry.

Assume OCðxþ �Þ includes two distinct reflections

T1 ¼ Th1g;"1
and T2 ¼ Th2g;"2

, with h1 and h2 relatively prime.

One obtains from (5.4) that "2"1h2h1 � h2h1 ¼ 0. This implies

that T1 ¼ T2. Therefore, either OCðxþ �Þ ¼ f1g or

OCðxþ �Þ ¼ hTi for some coincidence reflection T.

Let Tz;" 2 OCð�Þ n SOCð�Þ. If a is irrational and b is

rational, then 2ReðzxÞ, ReðzxÞ � ImðzxÞ =2 Z. This means that

"zx� zx 2 Z½i� if and only if " ¼ z ¼ 1. If z ¼ 1, one has

2ImðxÞ ¼ �2b 2 Z and (i) now follows from Lemma 5.2. The

proof of (ii) proceeds analogously.

Suppose now that both a and b are irrational. From Lemma

5.2, one obtains that a coincidence reflection Tz;" 2 OCðxþ �Þ
if and only if

a ¼

t
2ImðzÞ

þ
ReðzÞ
ImðzÞ

b; if " ¼ 1

t
2ReðzÞ

�
ImðzÞ
ReðzÞ

b; if " ¼ �1

t
ReðzÞ þ ImðzÞ

þ
ReðzÞ � ImðzÞ
ReðzÞ þ ImðzÞ

b; if " ¼ i

t
ReðzÞ � ImðzÞ

�
ReðzÞ þ ImðzÞ
ReðzÞ � ImðzÞ

b; if " ¼ �i

8>>>>>>>>><
>>>>>>>>>:

ð5:5Þ

for some t 2 Z. In each case, one is able to write a uniquely as

a ¼ cþ d � b where c; d 2 Q.

Assume that a ¼ ðp1=q1Þ þ ðp2=q2Þb where pj, qj 2 Z with pj

and qj relatively prime for j 2 f1; 2g. If p2q2 is even then a is

expressible in the form (5.5) if and only if " ¼ �1 and q1 j 2q2.

Then, one can simply take " ¼ 1 and z ¼ p2 þ q2i so that

Tz;" 2 OCðxþ �Þ. The case where p2q2 is odd is analogous. &

Remark 5.8. Note that for Tðp2þq2Þ=2�ðp2�q2Þi=2;i ¼ R � Tr in

Theorem 5.7, R actually corresponds to multiplication by the
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complex number z=z with z ¼ p2 þ q2i. However, in such a

representation, z and z are not relatively prime.

It only remains to consider the case when both components

of x are rational. Suppose that x ¼ aþ bi 2 QðiÞ and write

x ¼ p=q, where p, q 2 Z½i� with p and q relatively prime. It

turns out that SOCðxþ �Þ ultimately depends on the

denominator q of x. In particular, we have the following

lemma (see Loquias & Zeiner, 2010, Lemma 6, or Loquias,

2010, Lemma 3.28).

Lemma 5.9. Let � ¼ Z½i�, x ¼ p=q where p, q 2 Z½i� with p

and q relatively prime, and R ¼ Rz;" 2 SOCð�Þ. Then

R 2 SOCðxþ �Þ if and only if q divides "z� z. Consequently,

SOCðxþ �Þ ¼ SOCð1=qþ �Þ.

Hence, in the case of SOCðxþ �Þ, it is sufficient to restrict

the discussion to shifts of the form x ¼ 1=q. As an immediate

consequence of the divisibility condition set forth in Lemma

5.9 we obtain the following results.

Corollary 5.10. If q1; q2 2 Z½i� such that q1 j q2, then

SOC
1

q2

þ �

� �
	 SOC

1

q1

þ �

� �
:

This implies that the groups SOCðxþ �Þ form a lattice in

the algebraic sense of a partially ordered set where each pair

of elements has a supremum and an infimum. It is not difficult

to see that the supremum and infimum of SOCð1=q1 þ �Þ and

SOCð1=q2 þ �Þ are given by SOCð1=gcdðq1; q2Þ þ �Þ and

SOCð1=lcmðq1; q2Þ þ �Þ, respectively. The latter can be

expressed in terms of SOCð1=q1 þ �Þ and SOCð1=q2 þ �Þ.

Corollary 5.11. Suppose q1; q2 2 Z½i�. Then

SOC
1

lcmðq1; q2Þ
þ �

� �
¼ SOC

1

q1

þ �

� �
\ SOC

1

q2

þ �

� �
:

Proof. The forward inclusion follows from Corollary 5.10.

Suppose that R ¼ Rz;" 2 SOCð�Þ is a coincidence isometry of

1=q1 þ � and 1=q2 þ �. Then, by Lemma 5.9, lcmðq1; q2Þ

divides "z� z and so R 2 SOCð1=lcmðq1; q2Þ þ �Þ. &

In fact, it is sufficient to consider only shifts of the form

x ¼ 1=n with n 2 Z, as we have the following result.

Corollary 5.12. If q 2 Z½i� then

SOC
1

q
þ �

� �
¼ SOC

1

q
þ �

� �
¼ SOC

1

lcmðq; qÞ
þ �

� �
:

Proof. Note that q j ð"z� zÞ if and only if q j ð"z� zÞ. The

equalities then follow from Lemma 5.9 and Corollary 5.11. &

If x is of the form x ¼ 1=q where q is an odd integer, then we

get additional information on the elements of SOCð1=qþ �Þ
as well as their indices.

Proposition 5.13. Let � ¼ Z½i� and q> 1 be an odd rational

integer. If R ¼ Rz;" 2 SOCð1=qþ �Þ then the following holds.

(i) For all other units "0 6¼ ", Rz;"0 =2 SOCð1=qþ �Þ.
(ii) The coincidence index �ðRÞ is not divisible by q.

Proof. By Lemma 5.9, q j ð"z� zÞ.

(i) Assume to the contrary that Rz;"0 2 SOCð1=qþ �Þ for

some unit "0 6¼ " of Z½i�. Then q j ð"0z� zÞ from Lemma 5.9

which implies that q divides z. However, q is a rational integer,

and so q divides both real and imaginary parts of z. This is

impossible by the choice of z.

(ii) Suppose q divides �ðRÞ ¼ NðzÞ ¼ zz. Since q divides

zð"z� zÞ, the rational integer q also divides z2 which yields a

contradiction. &

It is a well known fact that Z½i� is a Euclidean domain. That

is, for any a; b 2 Z½i� with b 6¼ 0, there exist k; r 2 Z½i� such

that a ¼ kbþ r and NðrÞ � ð1=2ÞNðbÞ (see, for instance,

Hardy & Wright, 2008, Theorem 215). The next proposition

makes use of this fact.

Proposition 5.14. Let q> 1 be an odd rational integer and

write z ¼ kqþ r where k; r 2 Z½i� and NðrÞ< ð1=2ÞNðqÞ. Then

R ¼ Rz;" 2 SOCð1=qþ �Þ if and only if r ¼ "r, that is, when r

and r are associates in Z½i�.

Proof. Note that "z� z ¼ ð"k� kÞqþ ð"r� rÞ.

Suppose R 2 SOCð1=qþ �Þ. Then by Lemma 5.9,

q j ð"r� rÞ. Since q is odd, ð1� iÞq still divides "r� r.

Thus, Nðð1� iÞqÞ ¼ 2NðqÞ j Nð"r� rÞ. However, Nð"r� rÞ

� 4NðrÞ< 2NðqÞ. Therefore, Nð"r� rÞ ¼ 0 and so r ¼ "r.
The converse follows immediately by Lemma 5.9. &

It follows from the prime factorization of Gaussian integers

(see, for instance, Hardy & Wright, 2008) that r and r are

associates in Z½i� if and only if r is a rational integer multiple of

1, i, 1þ i, or 1� i. Hence, for all odd rational integers q> 1,

SOC
1

q
þ �

� �
¼

Rz;1 2 SOCð�Þ : z ¼ kqþ r; k 2 Z½i�; r 2 Z; 0< r<
1

2
q

� 	

[

�
Rz;i 2 SOCð�Þ : z ¼ kqþ ð1þ iÞr; k 2 Z½i�;

r 2 Z; 0< r<
1

2
q

	
:

Let V be the set of visible (or primitive) points of Z½i�, that is,

V ¼ fz 2 Z½i� : gcdðReðzÞ; ImðzÞÞ ¼ 1g

and let V0 ¼ fz 2 V : ð1þ iÞ 6 j zg be the set of visible points

that are not divisible by 1þ i. If f1=qþ�ðmÞ denotes the number

of CSLs for a given index m of the shifted lattice 1=qþ �, then
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the Dirichlet series generating function for f1=qþ�ðmÞ is given

by

�1=qþ�ðsÞ ¼
X1
m¼1

f1=qþ�ðmÞ

ms

¼
X
0<r<

q
2

gcdðr;qÞ¼1

�X
k2Z½i�

kqþr2V0

1

Nðkqþ rÞs

þ
X
k2Z½i�

kqþð1þiÞr2V0

1

Nðkqþ ð1þ iÞrÞs

�
: ð5:6Þ

In this case, the generating function cannot be written as an

Euler product. To visualize the set that the sum in (5.6) runs

over, consider the grid

Lq ¼ qZ½i� þ fr; ir; ð1þ iÞr; ð1� iÞr : r 2 Rg

(see Fig. 1). Observe that the sum is taken over one fourth of

the points of V0 lying on the grid L, that is, one point out of the

four points of V0 \ L that are equivalent under the action of

C4 appears in the sum.

Proposition 5.14 also gives the following lower bound on the

coincidence index of a coincidence rotation of 1=qþ �.

Corollary 5.15. Let � ¼ Z½i� and q> 1 be an odd rational

integer. If R ¼ Rz;" 2 SOCð1=qþ �Þ n Pð�Þ then �ðRÞ>
ð1=2Þq2.

Proof. Write z ¼ kqþ r where k; r 2 Z½i� and NðrÞ<
ð1=2ÞNðqÞ. If �ðRÞ � ð1=2Þq2, then r ¼ z. However, z=z is not

a unit, which contradicts Proposition 5.14. &

Finally, we want to return to OCðxþ �Þ. The picture is far

less complete here and we just mention the following result.

Proposition 5.16. Let x ¼ p=q where p; q 2 Z½i� with p and q

relatively prime. If none of the prime factors of NðqÞ is a

splitting prime of Z½i�, then OCðxþ �Þ is a group.

Proof. From Lemma 5.4, it suffices to show that the product

of any two coincidence reflections T1 ¼ Tz1;"1
and T2 ¼ Tz2;"2

of xþ � is in SOCðxþ �Þ to prove the claim.

Since none of the prime factors of NðqÞ splits in Z½i�, q ¼ uq

for some unit u of Z½i�. It follows from Lemma 5.2 that for

j 2 f1; 2g, q j ðu"jzjp� zjpÞ. Set g :¼ gcdðz1; z2Þ and write

zj ¼ hjg for j 2 f1; 2g. Then q divides u"2z2z1p� u"1z2z1p =

u"1ggpð"2"1h2h1 � h2h1Þ, and hence, q j ð"2"1h2h1 � h2h1Þ.

Finally, because T2T1 ¼ Rh2h1;"2"1
2 SOCð�Þ, the product

T2T1 2 SOCðxþ �Þ by Lemma 5.9. &

5.4. Specific examples

In order to illustrate our results we now explicitly compute

OCðxþ �Þ for certain values of x 2 QðiÞ. We discuss three

examples, all of which are related to the smallest splitting

prime 5 of Z½i�. The first two, x ¼ 1=5 and x ¼ i=ð1þ 2iÞ, share

the same group SOCðxþ �Þ but their sets OCðxþ �Þ differ

considerably. The third example is x ¼ ð2þ iÞ=6, where now

the numerator instead of the denominator is related to the

splitting prime 5. This will provide us with the simplest

example where the function counting the coincidence rota-

tions is not multiplicative. Further examples can be found in

Loquias & Zeiner (2010) and Loquias (2010).

In the following, the number of coincidence rotations and

CSLs for a given index m of the shifted lattice xþ � shall be

denoted by f̂fxþ�ðmÞ and fxþ�ðmÞ, respectively.

Example 5.17. Let us consider the case x ¼ 1=5 first. As x is

real, it is invariant under complex conjugation, or in other

words, there exists a reflection leaving xþ � invariant. This

assures us that OCðxþ �Þ is a group.

Here, the denominator is q ¼ 5. Write z ¼ 5kþ r where

k; r 2 Z½i� and NðrÞ< 25=2. For all possible remainders r, r is

not an associate of r if and only if 5 j NðzÞ. It follows then from

Propositions 5.13 and 5.14 that for all numerators z, there is a

(unique) unit " of Z½i� for which Rz;" 2 SOCðxþ �Þ if and only

if 5 6 j NðzÞ. This means that SOCðxþ �Þ ffi Zð@0Þ. Moreover,

OCðxþ �Þ ¼ SOCðxþ �Þ �hTri by Proposition 5.6, and

f̂fxþ�ðmÞ ¼ fxþ�ðmÞ ¼
fZ2 ðmÞ; if 5 6 j m

0; otherwise:

�

The function fxþ� is still multiplicative and the Dirichlet series

generating function for fxþ�ðmÞ is given by

�xþ�ðsÞ

¼
X1
m¼1

fxþ�ðmÞ

ms
¼

1� 5�s

1þ 5�s
��Z2 ðsÞ

¼ 1þ
2

13s
þ

2

17s
þ

2

29s
þ

2

37s
þ

2

41s
þ

2

53s
þ

2

61s
þ

2

73s

þ
2

89s
þ

2

97s
þ

2

101s
þ

2

109s
þ

2

113s
þ

2

137s
þ

2

149s
þ

2

157s

þ
2

169s
þ

2

173s
þ

2

181s
þ

2

193s
þ

2

197s
þ

4

221s
þ

2

229s
þ � � � :

One can show using a specific case of Delange’s theorem (see,

for instance, Baake & Moody, 1999, Theorem 5 of the
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The grid Lq. The black dots are points of qZ½i�.



Appendix) that the number of CSLs of xþ � with index at

most N is asymptotically 2N=ð3�Þ.

Example 5.18. Setting x ¼ i=ð1þ 2iÞ provides us with an

example where OCðxþ �Þ is not a group. In this case, the

denominator of x is q ¼ 1þ 2i. Since 5 ¼ lcmðq; qÞ,

SOCðxþ �Þ ¼ SOC
1

5
þ �

� �
ffi Zð@0Þ

by Corollary 5.12. Observe that OCðxþ �Þ does not include

a reflection symmetry by Lemma 5.2. From Example 5.17

and Proposition 5.6, we have 5 j NðzÞ whenever Tz;" ¼

Rz;" � Tr 2 OCðxþ �Þ.
Given a numerator z whose norm is divisible by 5, either

1þ 2i or 1� 2i (and not both) appears in the factorization

of z into primes of �. If ð1� 2iÞ j z, then zx 2 � which means

that "zx� zx 2 � for all units " of Z½i�. On the other hand,

if ð1þ 2iÞ j z then "zx� zx ¼ ið�"y� yÞ=5, where y ¼

ð1þ 2iÞz. This implies that "zx� zx =2 � for all units " of Z½i�,

since otherwise, Ry;�" 2 SOCð1=5þ �Þ by Lemma 5.9, which

is impossible because 5 j NðyÞ.

Therefore, by Lemma 5.2,

OCðxþ �Þ ¼ SOCðxþ �Þ [ fTz;" 2 OCð�Þ : ð1� 2iÞ j zg:

We claim that OCðxþ �Þ is not a group. Indeed, if

Tj ¼ Tz;"j
2 OCðxþ �Þ n SOCðxþ �Þ for j 2 f1; 2g with

"1 6¼ "2, then T2T1 =2 SOCðxþ �Þ.
Since SOCðxþ �Þ ¼ SOCð1=5þ �Þ, one concludes that

f̂fxþ�ðmÞ ¼ f̂f1=5þ�ðmÞ. Denote by F̂Fxþ�ðmÞ the number of linear

coincidence isometries of xþ � of index m. Since each non-

identity rotation symmetry is not a coincidence rotation of

xþ �, by Proposition 4.4, fxþ�ðmÞ ¼ F̂Fxþ�ðmÞ. It is remarkable

that fxþ� is still multiplicative, even though OCðxþ �Þ is not a

group. It is given by

fxþ�ðp
rÞ ¼

2; if p  1 ðmod 4Þ and p 6¼ 5

4; if p ¼ 5

0; otherwise;

8<
:

for primes p and r 2 N. The Dirichlet series generating func-

tion for fxþ�ðmÞ reads

�xþ�ðsÞ ¼
X1
m¼1

fxþ�ðmÞ

ms
¼

1þ 3 � 5�s

1þ 5�s
��Z2 ðsÞ

¼ 1þ
4

5s
þ

2

13s
þ

2

17s
þ

4

25s
þ

2

29s
þ

2

37s

þ
2

41s
þ

2

53s
þ

2

61s
þ

8

65s
þ

2

73s
þ � � � :

Looking at �xþ�ðsÞ, we have that the number of CSLs of xþ �
of index at most N is asymptotically given by 4N=ð3�Þ.

Example 5.19. Our last example is x ¼ ð2þ iÞ=6. Here, the

denominator of x is q ¼ 6 ¼ 2 � 3. Hence, by Corollary 5.11,

SOCðxþ �Þ ¼ SOC
1

2
þ �

� �
\ SOC

1

3
þ �

� �
:

From Loquias & Zeiner (2010, Example 3), Rz;" 2

SOCð1=2þ �Þ if and only if " ¼ �1. Write z ¼ 3kþ r, where

k; r 2 Z½i� and NðrÞ< 9=2. Note that, for all possible remain-

ders r, " ¼ r=r ¼ �1 if and only if NðrÞ  1 ðmod 3Þ. It follows

then from Proposition 5.14 that Rz;" 2 SOCðxþ �Þ for some

(unique) " 2 f1;�1g if and only if NðzÞ  1 ðmod 3Þ. Thus,

SOCðxþ �Þ ffi Zð@0Þ and

f̂fxþ�ðmÞ ¼
fZ2 ðmÞ; if m  1 ðmod 3Þ

0; otherwise:

�

Here, f̂fxþ� is not multiplicative anymore despite the fact

that both f̂f1=2þ� and f̂f1=3þ� are multiplicative (Loquias &

Zeiner, 2010; Loquias, 2010). However, f̂fxþ�ðmÞ ¼

ð1=2Þð1þ ��3ðmÞÞfZ2 ðmÞ is the sum of two multiplicative

functions. Hence, each term of f̂fxþ�ðmÞ has an Euler product

which allows us to explicitly calculate its Dirichlet series

generating function given by

�̂�xþ�ðsÞ ¼
X1
m¼1

f̂f xþ�ðmÞ

ms

¼
1

2
�Z2 ðsÞ þ

1

1� 2�s
�

1

1� 3�2s
�

Lðs; ��3ÞLðs; �12Þ

2�ð2sÞ

¼ 1þ
2

13s
þ

2

25s
þ

2

37s
þ

2

61s
þ

2

73s
þ

4

85s
þ

2

97s
þ � � � ;

where Lðs; ��3Þ and Lðs; �12Þ are the L-series of the primitive

Dirichlet characters

��3ðmÞ ¼

1; if m  1 ðmod 3Þ

�1; if m  2 ðmod 3Þ

0; otherwise

8<
:

and

�12ðmÞ ¼

1; if m  1; 11 ðmod 12Þ

�1; if m  5; 7 ðmod 12Þ

0; otherwise;

8<
:

respectively. One obtains that the number of coincidence

rotations of xþ � of index at most N is asymptotically N=ð2�Þ.
Again, OCðxþ �Þ does not contain a reflection symmetry.

Nevertheless, OCðxþ �Þ forms a group by Proposition

5.16 since NðqÞ ¼ 22 � 32. Proposition 5.6 indicates that if

the coincidence reflection Tz;" 2 OCðxþ �Þ then NðzÞ 

2 ðmod 3Þ. Conversely, suppose that z is a numerator with

NðzÞ  2 ðmod 3Þ. Observe that the numerator p ¼ 2þ i of

the shift x is a factor of 5 which splits in Z½i�. This means that if

p 6 j z, y :¼ zp is still a numerator corresponding to some

coincidence rotation of �. In fact, because NðyÞ  1 ðmod 3Þ,

Ry;" 2 SOCðxþ �Þ for some (unique) " 2 f1;�1g. Hence,

6 j ð"y� yÞ by Lemma 5.9, and one obtains that "zx� zx ¼

ð1=6Þð"y� yÞ 2 �. The case where p j z yields the same result.

Thus, Tz;" 2 OCðxþ �Þ by Lemma 5.2. Altogether one has

OCðxþ �Þ ¼ SOCðxþ �Þ [(
Tz;" : NðzÞ  2 ðmod 3Þ and " ¼

(
1; if 3 6 j ReðzpÞ

�1; if 3 j ReðzpÞ

	
:

From this we infer F̂Fxþ�ðmÞ ¼ fxþ�ðmÞ ¼ fZ2 ðmÞ, where

F̂Fxþ�ðmÞ counts the number of linear coincidence isometries of

research papers

664 Loquias and Zeiner 
 Coincidence problem for shifted lattices Acta Cryst. (2014). A70, 656–669



xþ � of a given index m. Note that fxþ� and F̂Fxþ� are multi-

plicative, whereas f̂fxþ� is not.

6. Linear coincidences of crystallographic point
packings

We now take a further step and consider the coincidence

problem this time for sets of points formed by finite unions of

shifted lattices. Such sets are of particular interest in crystal-

lography because they are a standard model for ideal crystals.

We briefly recall the notion of crystallographic point packings

here and refer for further reading to Baake & Grimm (2013)

and Pitteri & Zanzotto (1998), and references therein.

A subset L of Rd shall be called a crystallographic point

packing or a multilattice generated by the lattice � in Rd if L is

the union of � and a finite number of translated copies of �,

that is, L ¼
Sm�1

k¼0 ðxk þ �Þ where xk 2 R
d, m 2 N and x0 ¼ 0.

In general, a crystallographic point packing is not a lattice. An

orthogonal transformation R 2 OðdÞ will be called a linear

coincidence isometry of L if LðRÞ :¼ L \ RL includes a

cosublattice of some shifted lattice xk þ �, 0 � k � m� 1.

The intersection LðRÞ shall be referred to as the coincidence

site packing (CSP) of L generated by R. The density of LðRÞ in

L, by this we mean the ratio of the density of points in L by the

density of points in LðRÞ, is the coincidence index of R with

respect to L, which is denoted by �LðRÞ. Note that �LðRÞ is

not necessarily an integer.

The next lemma describes exactly when the intersection of

the shifted lattice xk þ � and the image of the shifted lattice

xj þ � under a linear isometry form a cosublattice of xk þ �.

Lemma 6.1. Suppose � is a lattice in Rd, R 2 OðdÞ, and

xj; xk 2 R
d. Then ðxk þ �Þ \ Rðxj þ �Þ contains a cosublattice

of xk þ � if and only if R 2 OCð�Þ and Rxj � xk 2 �þ R�.

Moreover, if Rxj � xk 2 ‘j;k þ R� with ‘j;k 2 �, then

ðxk þ �Þ \ Rðxj þ �Þ ¼ ðxk þ ‘j;kÞ þ �ðRÞ: ð6:1Þ

Proof. Write ðxk þ �Þ \ Rðxj þ �Þ = ðxk; 1dÞ½� \ ðRxj

� xk;RÞ��. Then the intersection ðxk þ �Þ \ Rðxj þ �Þ
contains a cosublattice of xk þ � if and only if R 2 OCð�Þ and

Rxj � xk 2 �þ R� by Theorem 3.3. Equation (6.1) follows

from equation (3.1). &

Equation (6.1) tells us that given an R 2 OCð�Þ satisfying

Rxj � xk 2 �þ R�, then the intersection ðxk þ �Þ \ Rðxj þ �Þ
does not only contain a cosublattice of xk þ �, but is itself a

cosublattice of xk þ �. In addition, the index of the co-

sublattice ðxk þ �Þ \ Rðxj þ �Þ in xk þ � is �ðRÞ.

Remark 6.2. Let � 	 Rd be a lattice, R 2 OðdÞ, and

xj; xk 2 R
d. The intersection ðxk þ �Þ \ Rðxj þ �Þ is a co-

sublattice of xk þ � if and only if it is a cosublattice of

Rxj þ R�. Indeed, if Rxj � xk 2 Rtj;k þ � with tj;k 2 � then

ðxk þ �Þ \ Rðxj þ �Þ ¼ ðRxj � Rtj;kÞ þ �ðRÞ: ð6:2Þ

The cosublattice ðxk þ �Þ \ Rðxj þ �Þ is also of index �ðRÞ in

Rxj þ R�.

The following theorem gives the solution of the coincidence

problem for a crystallographic point packing.

Theorem 6.3. Let L ¼
Sm�1

k¼0 ðxk þ �Þ be a crystallographic

point packing generated by the lattice � in Rd, where xk 2 R
d

for 0 � k � m� 1, x0 ¼ 0 and xk � xj =2 � whenever k 6¼ j.

(i) The set of linear coincidence isometries of L is OCð�Þ.
(ii) Given an R 2 OCð�Þ, let

� ¼ fðxj; xkÞ : Rxj � xk 2 �þ R�g:

Then

�LðRÞ ¼
m

j � j
�ðRÞ:

In addition, if Rxj � xk ¼ ‘j;k þ Rtj;k with ‘j;k; tj;k 2 �, then

LðRÞ ¼
[
ðxj;xkÞ2�

½ðxk þ ‘j;kÞ þ �ðRÞ�

¼
[
ðxj;xkÞ2�

½ðRxj � Rtj;kÞ þ �ðRÞ�: ð6:3Þ

Proof. The intersection LðRÞ can be expressed as the

disjoint union

LðRÞ ¼ L \ RL ¼
[m�1

j¼0

[m�1

k¼0

½ðxk þ �Þ \ Rðxj þ �Þ�: ð6:4Þ

(i) Suppose R is a linear coincidence isometry of L. Then

there is some shifted lattice xk þ � for which ðxk þ �Þ \ RL

contains a cosublattice of xk þ �. Thus, ðxk þ �Þ \
Rðxj þ �Þ 6¼ ; for some j with 0 � j � m� 1. However, the

number of shifted copies of � in L is finite. This implies that

the intersection ðxk þ �Þ \ Rðxj þ �Þ must be also a cosub-

lattice of xk þ �. It now follows from Lemma 6.1 that

R 2 OCð�Þ. Conversely, if R 2 OCð�Þ then the sublattice �ðRÞ
of � appears in LðRÞ. Thus, R is a linear coincidence isometry

of L.

(ii) Since ðx0; x0Þ 2 �, j�j 6¼ 0. One sees from Lemma 6.1

that ðxk þ �Þ \ Rðxj þ �Þ 6¼ ; whenever ðxj; xkÞ 2 �. Applying

equations (6.1) and (6.2) to each intersection of the disjoint

union in (6.4) yields (6.3). Now, each ðxj; xkÞ 2 � contributes a

different shifted copy of �ðRÞ to LðRÞ. This means that LðRÞ is

made up of j�j distinct shifted copies of �ðRÞ, each of which is

of index �ðRÞ in the respective shifted copy of � (or R�).

Because L consists of m separate shifted copies of �, the

formula for �LðRÞ follows. &

Therefore, the set of linear coincidence isometries of the

crystallographic point packing L generated by � is still OCð�Þ,
albeit the coincidence indices of an R 2 OCð�Þ with respect to

� and L are not necessarily equal. Moreover, LðRÞ consists of

cosublattices of shifted lattices in L, one of which must always

be �ðRÞ.
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7. Linear coincidences of the diamond packing

The diamond packing or tetrahedral packing (Conway &

Sloane, 1999) is made up of two face-centred cubic (f.c.c.)

lattices, wherein one of the f.c.c. lattices is a translate of the

other by ð1=4Þða; a; aÞ, with a being the length of the edges of a

conventional unit cell of the f.c.c. lattice (see Fig. 2). It is also

known as the packing Dþ3 and is not a lattice. An equivalent

way of constructing the diamond packing as a motif of vertices

of tetrahedrons and their barycentres can be found in Sunada

(2008). Here, we use the results of x6 to identify the linear

coincidence isometries, coincidence indices and the resulting

intersections of the diamond packing. To this end, we first

recall the corresponding results for cubic lattices.

7.1. Solution of the coincidence problem for cubic lattices

We see from x6 that it is imperative that we familiarize

ourselves with the coincidences of the f.c.c. lattice (see

Grimmer, 1974a, 1984; Grimmer et al., 1974; Baake, 1997;

Zeiner, 2005) before we even consider the coincidences

of the diamond packing. Let �P ¼ Z
3, �B ¼ �P [

½ð1=2; 1=2; 1=2Þ þ �P� and �F ¼ ��B denote the primitive cubic

(p.c.), body-centred cubic (b.c.c.) and f.c.c. lattices, respec-

tively. Then OCð�PÞ ¼ OCð�BÞ ¼ OCð�FÞ ¼ Oð3;QÞ, and if

R 2 Oð3;QÞ, then ��P
ðRÞ ¼ ��B

ðRÞ ¼ ��F
ðRÞ (Grimmer et

al., 1974; Baake, 1997). Therefore, it is enough to look at the

coincidences of the p.c. lattice.

As in the planar case, the analysis of OCðZ3
Þ starts with the

group of coincidence rotations of Z3. To this end, Cayley’s

parametrization of matrices in SOð3Þ by quaternions is used

(Baake, 1997). Let us first recall some results about quater-

nions and introduce some notations. Extensive treatments on

quaternions can be found in Koecher & Remmert (1991),

Conway & Smith (2003), Hurwitz (1919) and Hardy & Wright

(2008).

Let fe; i; j; kg be the standard basis of R4 where e ¼

ð1; 0; 0; 0ÞT , i ¼ ð0; 1; 0; 0ÞT , j ¼ ð0; 0; 1; 0ÞT and k ¼

ð0; 0; 0; 1ÞT . The quaternion algebra over R is the associative

division algebra H :¼ HðRÞ ¼ Reþ Riþ Rjþ Rk ffi R4

where multiplication is defined by the relations i2
¼ j2
¼

k2 ¼ ijk ¼ �e. An element of H is called a quaternion, and is

written as either q ¼ q0eþ q1iþ q2jþ q3k or q ¼ ðq0; q1;
q2; q3Þ. Given two quaternions q and p, their inner product is

defined as the standard scalar product of q and p as vectors in

R4. The conjugate of a quaternion q ¼ ðq0; q1; q2; q3Þ is

q ¼ ðq0;�q1;�q2;�q3Þ, and its norm is jqj2 ¼ qq ¼

q2
0 þ q2

1 þ q2
2 þ q2

3 2 R.

A quaternion whose components are all integers is called a

Lipschitz quaternion. On the other hand, a Hurwitz quaternion

is a quaternion whose components are all integers or all half-

integers. The set of Lipschitz quaternions and Hurwitz

quaternions shall be denoted by L and J, respectively. A

primitive quaternion q is a quaternion in L whose components

are relatively prime.

Given a quaternion q ¼ ðq0; q1; q2; q3Þ, its real part and

imaginary part are defined as ReðqÞ ¼ q0 and ImðqÞ ¼

q1iþ q2jþ q3k, respectively. The imaginary space of H is the

three-dimensional vector subspace ImðHÞ ¼ fImðqÞ : q 2 Hg

ffi R3 of H.

An R 2 SOCðZ3
Þ ¼ SOð3;QÞ can be parametrized by a

primitive quaternion q so that for all x 2 R3 viewed as an

element of ImðHÞ, RðxÞ ¼ qxq�1. In such a case, we denote R

by Rq. The coincidence index of Rq 2 SOCðZ3
Þ is equal to the

odd part of jqj2, that is, �ðRqÞ ¼ jqj
2=2‘, where ‘ is the largest

power of 2 that divides jqj2 (Grimmer et al., 1974; Grimmer,

1984; Baake, 1997).

Similarly, a primitive quaternion q can be associated to

every T 2 OCðZ3
Þ n SOCðZ3

Þ so that TðxÞ ¼ �qxq�1 ¼ qxq�1

for all x 2 ImðHÞ, in which case, T shall be written as Tq. The

CSLs generated by Tq and Rq are the same, and so �ðTqÞ ¼

�ðRqÞ.

Let fZ3 ðmÞ be the number of CSLs of Z3 of index m. Once

again, fZ3 is multiplicative (Grimmer, 1984; Baake, 1997) and

its Dirichlet series generating function is given by

�Z3 ðsÞ ¼
X1
m¼1

fZ3 ðmÞ

ms
¼
Y
p 6¼2

1þ p�s

1� p1�s
¼

1

1þ 2�s
�
�Jðs=2Þ

�ð2sÞ

¼ 1þ
4

3s
þ

6

5s
þ

8

7s
þ

12

9s
þ

12

11s
þ

14

13s
þ

24

15s
þ

18

17s

þ
20

19s
þ

32

21s
þ

24

23s
þ � � � ; ð7:1Þ

where �JðsÞ ¼ ð1� 21�2sÞ�ð2sÞ�ð2s� 1Þ is the zeta function of

J or the Dirichlet series generating function for the number of

nonzero right ideals of J (compare Vignéras, 1980). Here, the

number of CSLs of index at most N is asymptotically given by

3N2=�2. The number of coincidence rotations of Z3 for a given

index m is given by f̂fZ3 ðmÞ ¼ 24fZ3ðmÞ. Consequently, the

Dirichlet series generating function for f̂fZ3 ðmÞ is 24�Z3 ðsÞ [cf.

Reed et al., 2004, equation (3)].

7.2. The diamond packing

Take � to be an f.c.c. lattice. We identify R3 with ImðHÞ and

associate � with
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Figure 2
A conventional unit cell of the diamond packing. The white dots are part
of the f.c.c. lattice while the grey dots belong to the shifted f.c.c. lattice.



� ¼ 2ImðLÞ [ ½ð1; 1; 0Þ þ 2ImðLÞ�

[ ½ð0; 1; 1Þ þ 2ImðLÞ� [ ½ð1; 0; 1Þ þ 2ImðLÞ�:

The dual lattice of � is the b.c.c. lattice �� ¼ ImðJÞ, and the

diamond packing is identified with Dþ3 ¼ � [ ðxþ �Þ, where

x ¼ ð1=2Þð1; 1; 1Þ. It follows from Theorem 6.3 that the group

of linear coincidence isometries of Dþ3 is OCð�Þ ¼ OCð��Þ.
Theorem 6.3 suggests that it is necessary that we compute

for OCðxþ �Þ to ascertain the coincidence index of a linear

coincidence isometry R of Dþ3 . To this end, note that

�þ R� ¼ ½��ðRÞ��, that is, �þ R� is the dual lattice of the

CSL ��ðRÞ of ��. The next lemma, stated in Zeiner (2005),

gives a spanning set for ��ðRÞ over Z.

Lemma 7.1. Let �� ¼ ImðJÞ and R ¼ Rq 2 SOCð��Þ where

q ¼ ðq0; q1; q2; q3Þ is a primitive quaternion. Let

r0 : ¼ ImðqÞ ¼ ðq1; q2; q3Þ;

r1 : ¼ ImðqiÞ ¼ ðq0; q3;�q2Þ;

r2 : ¼ ImðqjÞ ¼ ð�q3; q0; q1Þ;

r3 : ¼ ImðqkÞ ¼ ðq2;�q1; q0Þ: ð7:2Þ

Then the CSL ��ðRÞ of �� is the Z-span of the following

vectors:

(i) r0, r1, r2, r3, ð1=2Þðr0 þ r1 þ r2 þ r3Þ if jqj2 is odd,

(ii) r0, ð1=2Þðr0 þ r1Þ, ð1=2Þðr0 þ r2Þ, ð1=2Þðr0 þ r3Þ if jqj2 

2 ðmod 4Þ,

(iii) ð1=2Þr0, ð1=2Þr1, ð1=2Þr2, ð1=2Þr3 if jqj2  0 ðmod 4Þ.

We now proceed to determine OCðxþ �Þ. In the succeeding

calculations, we embed ImðHÞ in H via the canonical projec-

tion so that vectors in ImðHÞ are treated as quaternions whose

real part is 0.

Observe that for u 2 fe; i; j; kg, R ¼ Rq 2 SOCð�Þ and

x 2 ImðHÞ,

hRx� x; ImðquÞi ¼ huq� qu; xi:

Denote by� the usual vector (cross) product of two vectors in

ImðHÞ ffi R3. Given a; b; c 2 ImðHÞ, one has a� b ¼

ð1=2Þðab� baÞ and ha� b; ci ¼ ha; b� ci (see, for instance,

Koecher & Remmert, 1991). Together, they imply that

hRx� x; ImðquÞi ¼ �2 hq; u � xi whenever u 2 fi; j; kg.

Therefore, substituting the vectors in equation (7.2) yields

hRx� x; r0i ¼ 0;

hRx� x; r1i ¼ �2hq; i� xi;

hRx� x; r2i ¼ �2hq; j� xi;

hRx� x; r3i ¼ �2hq; k� xi; ð7:3Þ

From now on, let x ¼ ð1=2Þð0; 1; 1; 1Þ. Keeping in mind that

Rx� x 2 �þ R� if and only if hRx� x; ti 2 Z for all

t 2 ��ðRÞ, we consider the following three possibilities:

Case I: jqj2 is odd.

By Lemma 7.1,

t ¼ ar0 þ br1 þ cr2 þ dr3 þ ð1=2Þeðr0 þ r1 þ r2 þ r3Þ

for some a; b; c; d; e 2 Z. It follows from (7.3) that

hRx� x; ti ¼ �hq; ð0; b; c; dÞ � ð0; 1; 1; 1Þi 2 Z

for all a, b, c, d, e 2 Z. Thus, by Theorem 4.3, Rq 2 SOCðxþ �Þ
whenever jqj2 is odd.

Case II: jqj2  2 ðmod 4Þ.

Write

t ¼ ar0 þ ð1=2Þbðr0 þ r1Þ þ ð1=2Þcðr0 þ r2Þ þ ð1=2Þdðr0 þ r3Þ

for some a; b; c; d 2 Z, and q ¼ rþ 2s for some s 2 J and

r 2 fð1; 1; 0; 0Þ; ð1; 0; 1; 0Þ; ð1; 0; 0; 1Þg. Then

hRx� x; ti ¼ � 1
2 hr; ð0; b; c; dÞ � ð0; 1; 1; 1Þi

� hs; ð0; b; c; dÞ � ð0; 1; 1; 1Þi =2 Z

for some values of b; c; d 2 Z. This means that Rq =2
SOCðxþ �Þ if jqj2  2 ðmod 4Þ.

Case III: jqj2  0 ðmod 4Þ.

One can express t as

t ¼ ð1=2Þar0 þ ð1=2Þbr1 þ ð1=2Þcr2 þ ð1=2Þdr3

for some a; b; c; d 2 Z. Write q ¼ rþ 2s where s 2 L and

r ¼ ð1; 1; 1; 1Þ. This yields

hRx� x; ti ¼ �hs; ð0; b; c; dÞ � ð0; 1; 1; 1Þi 2 Z

for all a; b; c; d 2 Z. Consequently, Rq 2 SOCðxþ �Þ when-

ever jqj2  0 ðmod 4Þ.

The following lemma summarizes the results for OCðxþ �Þ.

Lemma 7.2. Let � be the f.c.c. lattice

� ¼ 2ImðLÞ [ ½ð1; 1; 0Þ þ 2ImðLÞ�

[ ½ð0; 1; 1Þ þ 2ImðLÞ� [ ½ð1; 0; 1Þ þ 2ImðLÞ�

and x ¼ ð1=2Þð1; 1; 1Þ. Then ðSÞOCðxþ �Þ is a subgroup of

ðSÞOCð�Þ of index 2 given by

SOCðxþ �Þ ¼ fRq 2 SOCð�Þ : jqj2 6 2 ðmod 4Þg;

and

OCðxþ �Þ ¼ SOCðxþ �Þ [ fTq : jqj2  2 ðmod 4Þg:

If fxþ�ðmÞ, f̂fxþ�ðmÞ and F̂Fxþ�ðmÞ denote the number of CSLs,

coincidence rotations and linear coincidence isometries of

xþ � of index m, respectively, then fxþ�ðmÞ ¼ fZ3ðmÞ,

f̂fxþ�ðmÞ ¼ 12fxþ�ðmÞ and F̂Fxþ�ðmÞ ¼ 24fxþ�ðmÞ.

Proof. The explicit expression for SOCðxþ �Þ was obtained

from the computations preceding the lemma. Similar calcu-

lations yield OCðxþ �Þ.
Now, R 2 SOCðxþ �Þ if and only if R is parametrized by a

quaternion q with jqj2 ¼ 2m�, where m is an even integer and

� is odd. Similarly, the coincidence reflection T 2 OCðxþ �Þ
if and only if T is parametrized by a quaternion q with

jqj2 ¼ 2n	, where n and 	 are odd integers. With these two

criteria, one concludes by going through all the possible cases

that ðSÞOCðxþ �Þ is closed under composition. Hence, by

Proposition 4.9, ðSÞOCðxþ �Þ is a group.

It follows then from Proposition 4.4 that fxþ�ðmÞ ¼ fZ3ðmÞ.

Furthermore, expressions for f̂fxþ�ðmÞ and F̂Fxþ�ðmÞ follow from
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the fact that there are 12 symmetry rotations Rq with

jqj2 6 2 ðmod 4Þ, and 12 rotoreflection symmetries Tq with

jqj2  2 ðmod 4Þ, respectively. &

Finally, applying the same technique used in computing for

SOCðxþ �Þ yields that neither x nor Rx are in �þ R� for all

R 2 OCð�Þ. Theorem 6.3, together with Lemma 7.2, brings

about the following solution of the coincidence problem for

the diamond packing.

Theorem 7.3. Let � be the f.c.c. lattice

� ¼ 2ImðLÞ [ ½ð1; 1; 0Þ þ 2ImðLÞ�

[ ½ð0; 1; 1Þ þ 2ImðLÞ� [ ½ð1; 0; 1Þ þ 2ImðLÞ�

and Dþ3 be the diamond packing Dþ3 ¼ � [ ðxþ �Þ, where

x ¼ ð1=2Þð1; 1; 1Þ. Then the group of linear coincidence

isometries of Dþ3 is OCð�Þ. In particular, R ¼ Rq 2 SOCð�Þ is

a coincidence rotation of Dþ3 with

(i) Dþ3 ðRÞ ¼ �ðRÞ and �Dþ
3
ðRÞ ¼ 2��ðRÞ ¼ jqj

2 if jqj2 

2 ðmod 4Þ;

(ii) Dþ3 ðRÞ ¼ �ðRÞ [ ½ðxþ ‘Þ þ �ðRÞ�, where ‘ 2 ðRx� x

þ R�Þ \ �, and

�Dþ
3
ðRÞ ¼ ��ðRÞ ¼

jqj2; if jqj2 is odd

ð1=4Þjqj2; if jqj2  0 ðmod 4Þ:

�

Also, T ¼ Tq 2 OCð�Þ n SOCð�Þ is a coincidence rotoreflec-

tion of Dþ3 with

(i) Dþ3 ðTÞ ¼ �ðTÞ and

�Dþ
3
ðTÞ ¼ 2��ðTÞ ¼

2jqj2; if jqj2 is odd

ð1=2Þjqj2; if jqj2  0 ðmod 4Þ;

�

(ii) Dþ3 ðTÞ ¼ �ðTÞ [ ½ðxþ ‘Þ þ �ðTÞ�, where ‘ 2 ðTx� x þ

T�Þ \ �, and �Dþ
3
ðTÞ ¼ ��ðTÞ ¼ ð1=2Þjqj2 if jqj2  2 ðmod 4Þ.

If fDþ
3
ðmÞ is the number of CSPs of Dþ3 of index m, then fDþ

3

is multiplicative and for primes p and r 2 N,

fDþ
3
ðpr
Þ ¼

1; if pr ¼ 2

0; if p ¼ 2 and r> 1

ðpþ 1Þpr�1; otherwise:

8<
:

The Dirichlet series generating function for fDþ
3
ðmÞ reads

�Dþ
3
ðsÞ ¼

X1
m¼1

fDþ
3
ðmÞ

ms
¼ ð1þ 2�s

Þ ��Z3 ðsÞ ¼
�Jðs=2Þ

�ð2sÞ

¼ 1þ
1

2s
þ

4

3s
þ

6

5s
þ

4

6s
þ

8

7s
þ

12

9s
þ

6

10s

þ
12

11s
þ

14

13s
þ

8

14s
þ

24

15s
þ

18

17s
þ � � � : ð7:4Þ

Finally, the number of CSPs of Dþ3 with index at most N is

asymptotically 9N2=ð2�2Þ.

These results reflect nicely the special shelling structure of

Dþ3 . Observe that the points of � lie on shells of radius

r2  0 ðmod 4Þ [where r2 must not be of the form 4nð8kþ 7Þ;

see Hardy & Wright, 2008; Grosswald, 1985] and on shells of

radius r2  2 ðmod 4Þ. On the other hand, the points of xþ �
lie on shells with 4r2  3 ðmod 8Þ (see Hardy & Wright, 2008;

Grosswald, 1985). Thus, no coincidence isometry of Dþ3 can

map points of � onto points of xþ � and vice versa, which

leads to �Dþ
3
ðRÞ � ��ðRÞ for all coincidence isometries R. The

case �Dþ
3
ðRÞ ¼ ��ðRÞ corresponds to those R for which there

are coincidences in shells of both � and xþ �, whereas

�Dþ
3
ðRÞ ¼ 2��ðRÞ holds if there are only coincidences in

shells containing points of �.

Note that �Dþ
3
ðRÞ and ��ðRÞ are essentially given by the

norm jqj2 of a Hurwitz quaternion, or, if we view them as

vectors in R4, by the square of the length of a vector of the

four-dimensional centred hypercubic lattice D4. We thus

expect a connection to the shelling problem of D4, or more

precisely, to the root lattice D4 scaled by a factor of 1=2

(see Conway & Sloane, 1999). Indeed, in (7.4) �JðsÞ ¼
ð1=24Þ

P
0 6¼q2Jð1=jqj

4s
Þ is the generating function for the

number of nonzero right ideals of J, and likewise

24�Jðs=2Þ ¼
P

06¼q2Jð1=jqj
2s
Þ ¼

P
n2N½cJðnÞ=ns� is the gener-

ating function for the number cJðnÞ of points of J with square

length jqj2 ¼ n. The additional factor 1=�ð2sÞ in (7.4) is due to

the fact that we only count primitive quaternions.

8. Outlook

In this paper, the idea of linear coincidence isometries of

lattices was extended to include affine isometries. Moreover,

the coincidence problem for shifted lattices and for crystal-

lographic point packings was formulated in a mathematical

setting and was solved for some important examples.

Considering further lattices and crystal structures would be

interesting. For applications to quasicrystals, the ideas in this

paper should be extended to the Z-module case (Baake &

Grimm, 2013). In particular, techniques implemented and

results obtained in x5 on the coincidences of a shifted square

lattice may be generalized to planar modules by identifying

these modules with rings of cyclotomic integers. Initial results

in this direction can be found in Loquias (2010).

The set of affine coincidence isometries of a lattice and the

set of linear coincidence isometries of a shifted lattice do not

form a group in general. An investigation of their algebraic

structure should prove worthwhile. It has been shown in

Loquias (2010) that both sets are groupoids if and only if they

are groups. An example where the set of coincidence rotations

of a shifted lattice fails to form a group is still lacking. Such an

example might be found in three dimensions, where OðdÞ is

not Abelian anymore.
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